25 research outputs found

    AFTER, the front end ASIC of the T2K Time Projection Chambers

    Get PDF
    The T2K (Tokai-to-Kamioka) experiment is a long baseline neutrino oscillation experiment in Japan. A near detector, located at 280m of the production target, is used to characterize the beam. One of its key elements is a tracker, made of three Time Projection Chambers (TPC) read by Micromegas endplates. A new readout system has been developed to collect, amplify, condition and acquire the data produced by the 124,000 detector channels of these detectors. The front-end element of this system is a a new 72-channel application specific integrated circuit. Each channel includes a low noise charge preamplifier, a pole zero compensation stage, a second order Sallen-Key low pass filter and a 511-cell Switched Capacitor Array. This electronics offers a large flexibility in sampling frequency, shaping time, gain, while taking advantage of the low physics events rate of 0.3 Hz. We detail the design and the performance of this ASIC and report on the deployment of the frond-end electronics on-site

    Bulk micromegas detectors for large TPC applications

    Get PDF
    A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space between modules is of particular interest for these applications. We have built several large bulk Micromegas detectors (27 x 26 cm2) and we have tested them in the former HARP field cage setup with a magnetic field. Cosmic ray data have been acquired in a variety of experimental conditions. Good detector performances and space point resolution have been achieved

    Time projection chambers for the T2K near detectors

    Get PDF
    The T2K experiment is designed to study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large Super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to better understand neutrino interactions at the energy scale below a few GeV. A key element of the near detectors is the ND280 tracker, consisting of two active scintillator-bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The data collected with the tracker is used to study charged current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. The tracker is surrounded by the former UA1/Nomad dipole magnet and the TPCs measure the charges, momenta, and particle types of charged particles passing through them. Novel features of the TPC design include its rectangular box layout constructed from composite panels, the use of bulk micromegas detectors for gas amplification, electronics readout based on a new ASIC, and a photoelectron calibration system. This paper describes the design and construction of the TPCs, the micromegas modules, the readout electronics, the gas handling system, and shows the performance of the TPCs as deduced from measurements with particle beams, cosmic rays, and the calibration system

    The LArg Tower Builder Board: calculation, simulation, measurements.

    No full text
    The Tower Builder for the ATLAS electromagnetic calorimeter is i

    Low-noise HEMTs for Coherent Elastic Neutrino Scattering and Low-Mass Dark Matter Cryogenic Semiconductor Detectors

    No full text
    International audienceWe present the noise performance of high electron mobility transistors (HEMT) developed by CNRS/C2N laboratory. Various HEMT’s gate geometries with 2 pF to 230 pF input capacitance have been studied at 4  K. A model for both voltage and current noises has been developed with frequency dependence up to 1  MHz. These HEMTs exhibit low dissipation, excellent noise performance and can advantageously replace traditional Si-JFETs for the readout of high impedance thermal sensor and semiconductor ionization cryogenic detectors. Our model predicts that cryogenic germanium detectors of 30  g with 10  eV heat and 20  eVee_\mathrm{ee} baseline resolution are feasible if read out by HEMT-based amplifiers. Such resolution allows for high discrimination between nuclear and electron recoils at low threshold. This capability is of major interest for coherent elastic neutrino scattering and low-mass dark matter experiments such as Ricochet and EDELWEISS

    BRAHMS-Sensitive Bolometer Arrays for the SPICA Imaging Polarimetry

    No full text
    International audienceA high-sensitivity cryogenic sub-millimetre camera is planned for the SPICA space observatory. At the heart of this instrument, new all-silicon bolometer arrays integrate in pixel instrumental polarimetry capabilities

    CESAR: Cryogenic Electronics for Space Applications

    Get PDF
    Ultra-low temperature sensors provide unprecedented performances in X-ray and far infrared astronomy by taking advantage of physical properties of matter close to absolute zero. CESAR is an FP7 funded project started in December 2010, that gathers six European laboratories around the development of high performances cryogenic electronics. The goal of the project is to provide far-IR, X-ray and magnetic sensors with signal-processing capabilities at the heart of the detectors. We present the major steps that constitute the CESAR work, and the main results achieved so far

    First test of a Li2_2WO4_4(Mo) bolometric detector for the measurement of coherent neutrino-nucleus scattering

    No full text
    International audienceThe first observation of coherent elastic neutrino-nucleus scattering (CE ν NS), reported by the COHERENT Collaboration in 2017, paved the way for a new generation of experiments using reactor ν̄e and aiming at precisely measuring this process. In this context, the BASKET (Bolometers At Sub-KeV Energy Thresholds) R&D; project investigates the use of cryogenic detectors for a reactor CE ν NS experiment. This article reports on the first test of a Mo-doped lithium tungstate scintillating bolometer ( ⊘ 18 × 7 mm, 8 g), performed in an aboveground laboratory at CSNSM, Orsay (France). The detector bolometric performance (energy and time response, particle identification capabilities) and radiopurity have been studied and confirm the promising potential of lithium tungstate-based bolometric detectors for the measurement of CE ν NS at reactors
    corecore